# INTERNATIONAL JOURNAL OF INTELLECTUAL ADVANCES FOR MULTIDISCIPLINARY SCIENCES

IJIAMS.COM

Volume 01, Issue 02: Year 2025

# TEACHER PROFESSIONAL DEVELOPMENT FOR INNOVATIVE SCIENCE PEDAGOGIES

#### Renu

Lect. (English)
GSSS, Jind, India
renudeswal789@gmail.co
m

Submitted: 18/09/2025 Accepted: 25/09/2025

### **Abstract**

The increasing integration of emerging technologies and contemporary themes in science education has amplified the importance of teacher professional development (TPD). Innovative pedagogical approaches, including virtual reality (VR), robotics, artificial intelligence (AI), eco-science education, and inquiry-based learning (IBL), have transformed classrooms into interactive, student-centered environments. The successful implementation of these pedagogies, however, depends heavily on how effectively teachers are prepared and supported. This review examines the various models of professional development that enable science teachers to adopt innovative teaching strategies and explores the challenges that hinder their application. Short-term workshops, while useful for raising awareness, often lack depth, whereas continuous professional development (CPD), experiential training, and collaborative professional learning communities (PLCs) foster sustained skill development and reflective practice. Blended and online training platforms further expand accessibility, particularly for integrating AI and sustainability-focused curricula. The study also identifies major barriers, such as limited resources, inadequate teacher preparedness, rigid curricula, time constraints, and cultural or attitudinal resistance, which can impede the adoption of innovative science pedagogies. Strategies for effective implementation, including context-specific training, mentorship, curriculum alignment, policy support, and reflective practice, are emphasized as essential for maximizing TPD impact. Finally, the paper discusses future directions, highlighting AI-driven personalized training, global collaborative platforms, and hybrid pedagogical models that integrate technology with inquiry and eco-science education. By synthesizing current literature on TPD in science education, this review underscores the critical role of structured, sustained, and collaborative professional development in equipping teachers to create engaging, innovative, and future-ready learning environments.

**Keywords:** Teacher Professional Development, Innovative Pedagogies, Science Education, Virtual Reality, Robotics, Artificial Intelligence, Eco-Science, Inquiry-Based Learning

#### 1. Introduction

Science education in the 21st century requires pedagogical approaches that move beyond traditional lecture-based instruction to foster critical thinking, creativity, and problemsolving skills among stu- dents. Rapid technological advancements, global sustainability challenges, and the increasing ity of scientific complexknowledge necessitate innovative teaching strategies that engage students actively in the learning process [1, 2]. Inquiry-driven learning, projectbased instruction, and technology-enhanced pedagogies have emerged as central to modern science education, enabling students to explore scientific phenomena, formulate hypotheses, conduct experiments, and develop analytical reasoning skills [3,4].

Emerging technologies, such as virtual reality (VR), robotics, artificial intelligence (AI), and aug- mented reality (AR), provide immersive and interactive learning environments that enhance conceptual understanding and experiential learning [5, 6]. For instance, VR simulations allow students to visualize molecular structures or planetary systems in three dimensions, promoting deeper comprehension of ab- stract scientific concepts [7]. Similarly, robotics and AI tools facilitate hands-on experimentation and adaptive learning, integrating coding, engineering, and computational thinking into science curricula [8]. Eco-science pedagogies further enrich science instruction by linking classroom learning to real-world environmental issues, such as climate change, sustainability, and conservation, thereby promoting so- cially relevant scientific literacy [9].

The adoption of such innovative pedagogies, however, depends heavily on teacher readiness. Many educators face challenges in integrating technology, inquiry-based strategies, or sustainability-focused

content into their classrooms due to gaps in knowledge, experience, or confidence [10]. Teacher pro- fessional development (TPD) plays a crucial role in bridging this gap by equipping educators with both the pedagogical skills and technological competencies necessary to implement modern science teaching practices effectively [11]. TPD programs can take multiple forms, including workshops, continu- ous professional development (CPD) sessions, collaborative professional learning communities (PLCs), practice-based experiential training, and blended or online learning modules [12, 13].

Effective TPD emphasizes sustained, context-specific, and collaborative approaches support teachers throughout implementation process rather than offering short-term exposure to new tools or methods [14]. For instance, **CPD** programs incorporating peer mentoring, reflective practice, and iterative lesson design have been shown to improve teacher confidence and instructional quality in sci- ence classrooms [15]. Similarly, PLCs provide a platform for teachers to share experiences, co-develop lesson plans, and collaboratively troubleshoot challenges encountered in adopting innovative pedago- gies [16]. Practice-based training, such as laboratory simulations or classroom microteaching exercises, enables educators to apply strategies in a safe, supportive environment before full-scale implemen- tation [17].

Despite the demonstrated benefits of TPD, multiple barriers hinder its effectiveness. Resource con- straints, including limited access to technological tools such as VR kits or AI-enabled platforms, can re- strict the integration of innovation into classrooms [18]. Teachers may also lack familiarity or confidence in using new technologies, creating reluctance to experiment with inquiry-based or technology-driven methods [19]. Furthermore,

rigid curricula, standardized testing pressures, and limited instructional time often constrain opportunities for pedagogical innovation [20]. Cultural and attitudinal factors, such as resistance to change or entrenched teacher-centered models, further impede the widespread adoption of modern science teaching practices [21].

This paper aims to explore various TPD models that prepare science teachers to implement inno- vative pedagogies, evaluate their effectiveness, and identify barriers limiting their adoption. By syn- thesizing existing literature, the review highlights strategies for improving professional development, emphasizing approaches that are sustained, collaborative, and tailored to the specific needs of teachers and school contexts. The study ultimately underscores the central role of TPD in transforming sci- ence education to meet the demands of a rapidly evolving knowledge economy and global sustainability challenges [22, 23].

# 2. Innovative Pedagogies in Science Education

The rapid evolution of science education necessitates pedagogical approaches actively engage learn- ers, promote critical thinking, and integrate real-world contexts. Traditional teacher-centered methods, which focus primarily on lectures and rote memorization, are insufficient for preparing students to navi- gate complex scientific and technological landscapes [24]. Innovative pedagogies, including technology- integrated teaching, eco-science approaches, and inquirybased learning (IBL), are central to contemporary science instruction. These approaches conceptual foster deep understanding, problem-solving abilities, and transferable skills essential for the 21st century [25].

### 2.1 Technology-Integrated Pedagogies

Technology-integrated pedagogies leverage digital tools and emerging technologies to enhance science teaching and learning. They create interactive, immersive environments that support exploration, experimentation, and visualization of complex phenomena [26].

Virtual Reality (VR): VR allows students to engage with scientific concepts in threedimensional. immersive environments. providing experiences that are otherwise impractical in traditional classrooms. For instance, VR can simulate molecular interactions, chemical reactions, or planetary movements, en- abling students to observe phenomena dynamically and experiment safely [7]. Studies indicate that VR-enhanced lessons improve conceptual understanding, engagement, and motivation, particularly in topics involving abstract or large-scale systems [27].

Robotics: Robotics integrates hands-on problem-solving with interdisciplinary learning by combin- ing coding, engineering, and scientific inquiry. Robotics projects require students to design, build, and program devices to solve specific challenges, thereby fostering computational thinking and creativity alongside scientific reasoning [8]. Teacher training in robotics not only equips educators to facilitate these activities but also helps in incorporating cross-curricular connections between physics, mathemat- ics, and computer science [28].

Artificial Intelligence (AI): AI-powered platforms, such as adaptive learning systems and intelli- gent tutoring systems, provide personalized instruction tailored to each student's learning pace, style, and prior knowledge [29]. AI tools enable teachers to monitor student progress through real-time analytics, identify misconceptions, and deliver targeted interventions. The integration of AI in

science classrooms promotes data-driven instruction, enhances differentiation, and supports self-directed learning [30].

## 2.2 Eco-Science Pedagogies

Eco-science pedagogy emphasizes sustainability, environmental stewardship, and the integration of global and local ecological challenges into classroom learning. Teachers trained in eco-science ap- proaches guide students to investigate environmental issues such as climate change, biodiversity loss, waste management, and water scarcity, linking scientific inquiry to real-world contexts [9].

Eco-science pedagogies promote experiential learning through fieldwork, community projects, and outdoor investigations, enabling students to observe environmental phenomena and propose solutions grounded in scientific principles [31]. By contextualizing science within social and ecological systems, eco-science enhances relevance, fosters responsible citizenship, and cultivates systems thinking. Studies indicate that eco-science education improves environmental literacy. attitudes toward sustainability, and motivation to engage in conservation actions [32].

## 2.3 Inquiry-Based Learning (IBL)

Inquiry-Based Learning (IBL) positions students as active participants in constructing knowledge rather than passive recipients. Teachers act as facilitators, guiding learners to ask questions, design experiments, collect data, and draw evidence-based conclusions [33]. IBL develops critical thinking, problemsolving, creativity, and scientific reasoning skills, essential for adapting to dynamic scientific and societal challenges [34].

IBL can be structured through various frameworks, including guided inquiry, open inquiry, and problem-based learning, depending on the level of teacher support and

Restudent autonomy [35]. search demonstrates that classrooms implementing IBL exhibit higher student engagement, deeper un- derstanding of scientific concepts, and enhanced metacognitive skills compared to traditional teaching approaches [36]. Moreover, IBL encourages collaboration, communication, and the integration of inter- disciplinary knowledge, aligning with contemporary expectations for science education [37].

### 2.4 Integration and Synergy

While each innovative pedagogy offers unique benefits, the most effective science instruction often re- sults from combining multiple approaches. Technology-enhanced IBL, for example, allows students to conduct virtual experiments and analyze real-time data while developing inquiry skills [38]. Simi- larly, eco-science projects can incorporate robotics or AI simulations to model environmental systems, creating interdisciplinary learning experiences that mirror real-world scientific practice [39]. Teacher professional development that emphasizes integrated approaches equips educators to implement these synergistic strategies effectively, ensuring that innovations enhance rather than overwhelm classroom practice [11].

In conclusion, innovative pedagogies in science education—technology integration, eco-science approaches, and inquiry-based learning—represent transformative strategies that prepare students for complex global challenges. Their success depends on equipping teachers with the knowledge, skills, and confidence to implement these methods effectively, highlighting the critical role of continuous and context-specific professional development [12].

# 3. Teacher Professional Development (TPD) Models

Effective integration of innovative pedagogies in science education relies heavily on teacher profes- sional development (TPD). Teachers must be equipped not only with technical knowledge but also with pedagogical strategies to implement inquiry-based, technologyintegrated, and eco-science approaches. Multiple models of professional development exist, each with distinct advantages and limitations, rang- ing from short-term workshops to long-term collaborative and practice-based programs [12].

# 3.1 Workshops and Training Modules

Short-term workshops and structured training modules are common entry points for introducing teachers to new tools such as virtual reality (VR), robotics kits, and AI-based platforms. These workshops provide hands-on demonstrations, familiarization with devices, and basic instructional strategies. While they are effective in raising awareness and generating initial interest, their impact is often limited by brevity and lack of follow-up [15]. Teachers may struggle to translate workshop experiences into sustained classroom practice without additional support and reinforcement.

# 3.2 Continuous Professional Development (CPD)

Continuous Professional Development (CPD) programs address the limitations of short-term workshops by providing sustained learning opportunities. CPD emphasizes iterative cycles of learning, reflec- tion, and practice. allow Ongoing sessions teachers experiment with inquiry-based learning and technology-enhanced instruction while receiving feedback from peers and mentors. Reflective practices embedded in CPD

encourage self-assessment and adaptation, ensuring that teachers develop deep understanding and practical skills over time [40]. Studies indicate that CPD leads to more significant improvements in teacher efficacy and student outcomes compared to isolated training events [41].

### 3.3 Collaborative Learning Communities

Professional Learning Communities (PLCs) or collaborative networks create environments for peer-to- peer learning, shared lesson planning, and co-creation of instructional strategies. Within PLCs, teachers discuss challenges, exchange resources, and collectively refine pedagogical approaches. Such collab- orative models promote professional growth through social learning, enhance confidence in applying innovative methods, and foster a culture of continuous improvement [13]. Collaborative models also help address contextual challenges by leveraging collective experience and expertise.

# 3.4 Practice-Based and Experiential Training

Practice-based and experiential training provides teachers with opportunities to apply theoretical knowl- edge in realistic settings, such as labs, maker spaces, or simulated classrooms. Teachers can integrate VR simulations, robotics projects, and eco-science experiments under guided supervision. This ap- proach bridges the gap between theory and practice, allowing teachers to troubleshoot, adapt, and refine strategies before implementing them in their own classrooms. Experiential learning has been shown to enhance pedagogical confidence and improve fidelity of implementation for complex instructional innovations [42].

### 3.5 Blended and Online Training

Blended and online professional development leverages digital platforms to provide scalable, flexible training opportunities. Online modules. video tutorials. virtual and workshops allow teachers to ac- cess content asynchronously while participating discussion forums and mentoring sessions. These platforms are particularly useful for AIdriven personalized learning or sustainabilityfocused educa- tion. However, successful implementation requires teachers to have adequate digital literacy and self- motivation, lack of engagement can reduce effectiveness [12].

In summary, a multi-faceted approach to TPD—combining workshops, continuous learning, collaborative communities, experiential training, and digital platformsoptimizes teacher readiness for inno- vative science pedagogies. Integrating these models ensures that teachers are both technically competent and pedagogically prepared to implement VR, robotics, AI, eco-science, and inquiry-based learning ef- fectively in diverse educational contexts.

# 4. Obstacles to Adopting Innovative Science Pedagogies

Despite the recognized benefits of innovative pedagogies in science education, their adoption in class- rooms often encounters significant obstacles. These barriers range from material limitations to systemic, cultural, and personal factors, all of which influence how effectively teachers can implement technology-integrated, eco-science, and inquiry-based approaches [43].

#### **4.1 Resource Constraints**

One of the most immediate barriers to innovation is the lack of adequate resources.

High costs associated with virtual reality (VR) devices, robotics kits, and AI-based learning tools restrict access, especially in underfunded schools. Similarly, eco-science projects often require materials for outdoor experiments, field trips, or laboratory setups, which may not be readily available. The uneven distribution of educational resources exacerbates disparities, limiting equitable access to innovative science education for all students Without sufficient funding infrastructure, even well-trained teachers may be unable to implement new pedagogical strategies effectively.

### 4.2 Lack of Teacher Preparedness

Teachers' familiarity and comfort with emerging technologies and novel teaching approaches play a critical role in adoption. Many educators feel unprepared to integrate VR, AI, or robotics into lessons due to limited prior experience, inadequate training, or fear of failure. This lack of confidence can lead to resistance or selective adoption, where teachers may incorporate only minor elements of innovation rather than fully embracing student-centered approaches [18]. Continuous professional development and mentorship programs are crucial to building teacher competence and self-efficacy in using innovative pedagogies.

### 4.3 Curriculum and Policy Limitations

Rigid, exam-focused curricula pose another significant barrier. Standardized assessments often priori- tize content coverage over inquiry, experimentation, or project-based learning. Consequently, teachers may feel constrained to follow prescribed syllabi, leaving little room for integrating eco-science ac- tivities, VR simulations, or collaborative inquiry projects. Policies that emphasize performance metrics without accommodating innovative

teaching practices can inadvertently discourage experimentation and pedagogical risk-taking [45].

#### 4.4 Time Constraints

Effective implementation of innovative pedagogies demands additional time for planning, preparation, and reflection. Teachers are frequently burdened with administrative duties, grading, and lesson prepa- ration, leaving limited scope for experimenting with new methods. Activities such as coding robotics projects, setting up VR simulations, or conducting eco-science experiments require careful organiza- tion and extended class periods. which may be difficult accommodate within conventional school schedules [46].

#### 4.5 Attitudinal and Cultural Barriers

Finally, attitudinal and cultural factors can impede the adoption of student-centered approaches. Resis- tance to change, skepticism regarding new technologies, and traditional expectations of teacher-centered instruction often clash with inquiry-based or technology-driven methods. Teachers may fear criticism from peers, parents, or administrators if they deviate from conventional practices, limiting the imple- mentation of innovative strategies [47]. Building a culture that values experimentation, collaboration, and reflective practice is essential to overcoming these barriers.

In conclusion, while innovative science pedagogies have the potential to enhance learning outcomes, successful adoption is constrained by a combination of material, systemic, temporal, and cultural ob- stacles. Addressing these barriers requires targeted policies, adequate funding, sustained professional development, and a supportive school culture to empower teachers to embrace

transformative teaching practices.

# 5. Strategies for Effective Implementation

Implementing innovative science pedagogies requires more than teacher enthusiasm; it necessitates well- planned strategies that address contextual, curricular, and systemic factors. To ensure effective adoption of technology-integrated, eco-science, and inquiry-based approaches, educational institutions and poli- cymakers must design multi-faceted support systems for teachers [12].

### 5.1 Needs-Based Training

Professional development programs should be tailored to the specific needs of teachers and their local contexts. This involves identifying gaps in technological proficiency, subject knowledge, and pedagog- ical skills before designing training modules. For example, rural schools may require low-cost, locally solutions adaptable for eco-science experiments, whereas urban schools may prioritize AI-driven learn- ing platforms or VR simulations. Needs-based training ensures that teachers can directly apply newly acquired skills in their classrooms, enhancing both confidence and instructional effectiveness [48].

#### 5.2 Integration with Curriculum

Alignment of innovative teaching methods with official curricula is essential to avoid conflicts between creative pedagogical approaches and mandated learning outcomes. Training programs should guide teachers on embedding VR, robotics, inquiry-based learning, and eco-science projects within the curriculum framework, ensuring that academic goals are reinforced rather than neglected. Curriculum- integrated strategies help teachers manage time efficiently and

maintain relevance to standardized assessments while fostering student engagement and higher-order thinking skills [49].

### 5.3 Mentorship and Coaching

Mentorship plays a pivotal role in sustaining professional development. Experienced teachers, educa- tional technology specialists, or external experts can provide guidance, feedback, and modeling of best practices. Mentorship programs enable novice educators to navigate challenges in integrating innovative methods, troubleshoot technological issues, and refine lesson planning. Peer coaching also promotes collaborative reflection, enhancing problem-solving and pedagogical creativity within teaching commu- nities [12].

## **5.4 Policy and Funding Support**

Institutional and governmental support is crucial for successful implementation. Schools need adequate funding for procuring VR devices, robotics kits, laboratory materials, and eco-science project resources. Policies that provide grants, subsidies, or partnerships with technology providers can reduce resource disparities and encourage schools to adopt modern teaching methods. Strategic policy planning also includes allocating time for teacher training, recognizing innovative teaching practices, and integrating them into performance evaluation criteria [48].

#### 5.5 Reflective Practice

Encouraging reflective practice allows teachers to continuously assess and improve their teaching strate- gies. Reflection involves evaluating lesson effectiveness, student engagement, and learning outcomes to identify areas for enhancement. When combined with collaborative discussions in Professional Learn- ing Communities (PLCs), reflective practice fosters a culture of continuous

learning, experimentation, and adaptation. Teachers who engage in reflection develop greater self-efficacy and are better positioned to sustain the integration of innovative pedagogies over time [50].

In conclusion, effective implementation of innovative science pedagogies relies on a comprehensive approach combining needsbased training, curriculum integration, mentorship, policy support, and re- flective these practice. When strategies systematically applied, teachers are empowered to transform classrooms into student-centered environments dynamic, capable of fostering critical thinking, creativity, and scientific reasoning.

# 6. Future Directions in Professional Development

As science education continues to evolve, teacher professional development (TPD) must also adapt to emerging pedagogical trends, technological advancements, and global challenges. Future-oriented TPD strategies aim to empower educators to deliver innovative, student-centered science instruction while addressing sustainability, digital literacy, and global competencies [51].

### **6.1 AI-Driven Teacher Training**

Artificial intelligence (AI) offers transformative potential for TPD by providing personalized learning experiences tailored to individual teachers' strengths, weaknesses, and professional growth trajectories. AI-driven platforms can analyze teaching practices, suggest targeted interventions, and deliver adaptive learning modules that focus on specific pedagogical skills, content knowledge, or technology integration. Such systems enhance self-paced learning, provide real-time feedback, and support reflective practice, ultimately enabling teachers to adopt

innovative science pedagogies more effectively [29].

#### 6.2 Global Collaboration Platforms

Digital connectivity allows teachers participate in international communities of practice, share lesson plans, co-develop resources, and exchange experiences across cultural and educational contexts. Global collaboration platforms foster cross-border professional learning, exposing educators to diverse instruc- tional strategies, assessment techniques, and technology applications. Participation in these networks can also opportunities, facilitate mentorship collaborative research projects, and dissemination of best practices, thereby expanding the impact of TPD beyond local or regional limitations [18].

# **6.3 Sustainability-Focused Professional Development**

Addressing climate change, environmental literacy, and sustainable development requires teachers to integrate eco-science concepts into classroom practice. Future TPD programs are likely to prioritize sustainability-focused training that aligns with global goals such as the United Nations Sustainable De-velopment Goals (SDGs). These programs educators with strategies to design hands-on projects, field investigations, and communitybased initiatives that link global environmental issues to local con- texts. Sustainabilityfocused TPD encourages students to become informed, responsible citizens capable of addressing real-world ecological challenges [52].

#### 6.4 Hybrid Pedagogical Models

Hybrid models combining technologyenhanced instruction, inquiry-based learning, and community- oriented projects are increasingly recognized as effective approaches for science education. Future TPD initiatives will likely emphasize the integration of VR, robotics, AI, and online simulations with hands- on investigations, collaborative problem-solving, and citizen science projects. This approach encourages teachers to balance digital tools with experiential learning, promoting critical thinking, creativity, and real-world problem-solving among students [51, 52].

In summary, the future of TPD in science involves education leveraging ΑI for personalized growth, fostering global collaboration, emphasizing sustainability, and adopting hybrid pedagogical models. These directions aim to prepare teachers to navigate rapidly changing educational landscapes while pro- moting student-centered, technologyintegrated, and environmentally responsible science learning. By embracing strategies, educational institutions can ensure that teachers remain at the forefront of innovation and continue to cultivate the scientific literacy, creativity, and problemsolving skills needed for the 21st century.

#### 7. Conclusion

Teacher professional development (TPD) plays a pivotal role in bridging the gap between innovative ped- agogical approaches and classroom practice in science education. As science classrooms increasingly incorporate technology-driven and student-centered methods, the effectiveness of teaching largely de- pends on the preparedness and confidence of educators. Continuous, collaborative, and context-specific training enables teachers to integrate emerging tools such as virtual reality (VR), robotics, artificial in-telligence (AI), and eco-science projects, as well as inquirybased learning approaches, in meaningful ways that enhance student engagement and learning outcomes.

A well-structured professional development framework equips teachers not only with technical skills but also with pedagogical strategies to foster critical thinking, creativity, and problem-solving among students. By participating in ongoing training programs, collaborative learning communities, and experiential workshops, teachers develop a deeper understanding of how to apply innovative methods effect tively, adapt to diverse classroom contexts, and address the varying needs of their students. Mentorship, peer support, and reflective practices further strengthen their capacity to refine instructional strategies and maintain high-quality science teaching.

However, successful implementation of innovative pedagogies requires more than individual teacher effort. Resource availability, institutional support, and systemic policies significantly influence the adop- tion of modern teaching approaches. Investments technological infrastructure, such as VR labs, robotics kits, and AI-enabled platforms, along with dedicated time for teacher learning, are essential for sustaining professional growth. Simultaneously, fostering a culture that values experimentation, cre- ativity, and collaboration helps overcome attitudinal and cultural barriers that may otherwise impede innovation.

conclusion. teacher professional development is the cornerstone of future-ready science educa- tion. By combining continuous learning, practical experience, collaborative engagement, and supportive policies, educators confidently implement innovative pedagogies that prepare students to navigate complex scientific and societal challenges. A focus on sustained, context-driven, and reflective profes- sional growth ensures that science education remains inclusive, engaging, and aligned with the evolving demands of the 21st century, ultimately fostering a generation of learners equipped with the knowledge, skills, and mindset to contribute meaningfully to a rapidly changing world.

#### References

- [1] D. H. Jonassen, Learning to Solve Problems with Technology: A Constructivist Perspective, 2nd ed.
   Upper Saddle River, NJ: Prentice Hall, 2011.
- [2] R. Bybee, *The BSCS 5E Instructional Model: Creating Teachable Moments*, Arlington, VA: NSTA Press, 2014.
- [3] L. E. Flick, Science Education in the Early 21st Century: Trends and Issues, Dordrecht, Nether-lands: Springer, 2015.
- [4] B. J. Fraser, Science Teaching and Learning: Theoretical Perspectives and Practice, London, UK: Routledge, 2017.
- [5] P. B. de Jong, "Virtual and augmented reality in science education," *Computers & Education*, vol. 152, pp. 103–123, Jan. 2020.
- [6] C. Dede, "The role of emerging technologies in teaching and learning," *Educational Technology*, vol. 60, no. 6, pp. 14–20, Nov. 2020.
- [7] M. Radianti, F. Majchrzak, and K. Frommholz, "A systematic review of immersive virtual reality applications for higher education," *Computers & Education*, vol. 147, 103778, 2020.
- [8] R. Alimisis, "Robotics in education: Current status and future prospects," *Educational Technology & Society*, vol. 21, no. 4, pp. 48–59, 2018.
- [9] T. Sterling, Sustainable Education: Revisioning Learning and Change, Bristol, UK: Green Books, 2017.

- [10] M. K. Gulbahar and H. Guven, "The impact of teacher training on integrating technology into science teaching," *Journal of Science Education and Technology*, vol. 26, no. 5, pp. 505–520, 2017.
- [11] D. Opfer and D. Pedder, "The role of teacher professional learning in shaping classroom practice," *Teaching and Teacher Education*, vol. 27, no. 1, pp. 54–63, 2011.
- [12] L. Darling-Hammond, A. Hyler, and M. Gardner, Effective Teacher Professional Development, Palo Alto, CA: Learning Policy Institute, 2017.
- [13] S. Vescio, D. Ross, and A. Adams, "A review of research on the impact of professional learning communities on teaching practice and student learning," *Teaching and Teacher Education*, vol. 24, pp. 80–91, 2008.
- [14] J. Borko, "Professional development and teacher learning: Mapping the terrain," *Educational Re- searcher*, vol. 33, no. 8, pp. 3–15, 2004.
- [15] L. Opfer, D. Pedder, and L. Lavicza, "Teacher professional learning and development: Best evi- dence synthesis," Wellington, NZ: Ministry of Education, 2011.
- [16] R. Hord, Professional Learning
  Communities: Communities of
  Continuous Inquiry and Improve- ment,
  Austin, TX: Southwest Educational
  Development Laboratory, 1997.
- [17] P. Bell and H. Gilbert, "Teacher development as professional learning," *Teaching and Teacher Education*, vol. 17, no. 8, pp. 947–967, 2001.
- [18] A. Mishra and M. Koehler,

- "Technological pedagogical content knowledge: A framework for teacher knowledge," *Teachers College Record*, vol. 108, no. 6, pp. 1017–1054, 2006.
- [19] S. Ertmer and A. Ottenbreit-Leftwich, "Teacher technology change: How knowledge, confidence, beliefs, and culture intersect," *Journal of Research on Technology in Education*, vol. 42, no. 3, pp. 255–284, 2010.
- [20] J. Cuban, Oversold and Underused: Computers in the Classroom, Cambridge, MA: Harvard Uni- versity Press, 2001.
- [21] E. Fullan, The New Meaning of Educational Change, 5th ed., New York, NY: Teachers College Press, 2016.
- [22] R. H. Shulman, Knowledge and Teaching: Foundations of the New Reform, Cambridge, MA: Harvard University Press, 1987.
- [23] UNESCO, Education for Sustainable Development Goals: Learning Objectives, Paris, France: UNESCO Publishing, 2017.
- [24] D. F. Treagust and B. A. Duit, Conceptual Change in Science and Science Education, London, UK: Routledge, 2008.
- [25] J. L. Prince and R. M. Felder, "Inductive teaching and learning methods: Definitions, comparisons, and research bases," *J. Eng. Educ.*, vol. 95, no. 2, pp. 123–138, Apr. 2006.
- [26] R. Luckin et al., Enhancing Learning and Teaching with Technology: What the Research Says, London, UK: UCL Institute of Education, 2012.
- [27] A. Merchant et al., "Effectiveness of virtual reality-based instruction on

- students' learning out- comes in K-12 and higher education," *Comput. Educ.*, vol. 70, pp. 29–40, 2014.
- [28] P. Bers, Coding as a Playground:

  Programming and Computational

  Thinking in the Early Child- hood

  Classroom, New York, NY: Routledge,
  2018.
- [29] S. Holmes et al., *Artificial Intelligence in Education*, Cham, Switzerland: Springer, 2019.
- [30] R. Luckin, "Machine learning and AI in education: Opportunities and challenges," *Nat. Hum. Behav.*, vol. 3, pp. 16–22, 2019.
- [31] K. A. Moore and R. J. Smith, "Environmental education and sustainability: Pedagogical ap- proaches for science teachers," *Int. J. Sci. Educ.*, vol. 38, no. 7, pp. 1015–1035, 2016.
- [32] M. Ardoin et al., "Environmental education outcomes for youth: A systematic review," *J. Environ. Educ.*, vol. 48, no. 2, pp. 65–85, 2017.
- [33] J. Minner, A. Levy, and J. Century, "Inquiry-based science instruction: What is it and does it matter?" *J. Res. Sci. Teach.*, vol. 47, no. 4, pp. 474–496, 2010.
- [34] J. Bruner, *The Process of Education*, Cambridge, MA: Harvard University Press, 1960.
- [35] A. C. Edelson, "Learning-for-use: A framework for the design of technology-supported inquiry activities," *J. Res. Sci. Teach.*, vol. 38, no. 3, pp. 355–385, 2001.
- [36] R. Hmelo-Silver, "Problem-based learning: What and how do students learn?" *Educ. Psychol. Rev.*, vol. 16, pp. 235–266, 2004.

- [37] L. Furtak et al., "Experimental and quasi-experimental studies of inquiry-based science teaching: A meta-analysis," *Rev. Educ. Res.*, vol. 81, no. 1, pp. 26–60, 2011.
- [38] S. Papadopoulou et al., "Technology-enhanced inquiry-based learning in STEM education," *Com- put. Educ.*, vol. 156, 103954, 2020.
- [39] M. Gray et al., "Integrating sustainability into STEM education through ecoscience and technol- ogy," *Sustainability*, vol. 12, no. 5, 1882, 2020.
- [40] S. Desimone, "Improving impact studies of teachers' professional development: Toward better conceptualizations and measures," *Educ. Res.*, vol. 38, no. 3, pp. 181–199, 2009.
- [41] M. Avalos, "Teacher professional development in teaching and teacher education over ten years," *Teach. Teach. Educ.*, vol. 27, no. 1, pp. 10–20, 2011.
- [42] P. Kolb, Experiential Learning:

  Experience as the Source of Learning and
  Development, 2nd ed., Upper Saddle
  River, NJ: Pearson, 2015.
- [43] J. Voogt, N. Fisser, P. Pareja Roblin, P. Tondeur, and N. van Braak, "Technological pedagogical content knowledge A review of the literature," *J. Comput. Assist. Learn.*, vol. 29, no. 2, pp. 109–121, 2013.
- [44] K. Means, Y. Toyama, R. Murphy, M. Bakia, and K. Jones, *Evaluation of Evidence-Based Practices in Online Learning*, Washington, DC: US Department of Education, 2010.
- [45] P. Krajcik and L. Blumenfeld, "Project-based learning," in *The Cambridge*

- Handbook of the Learn- ing Sciences, R. K. Sawyer, Ed., Cambridge, UK: Cambridge Univ. Press, 2006, pp. 317–334.
- [46] D. H. Schunk and J. A. DiBenedetto, "Motivation and social-emotional learning in STEM education," *Contemp. Educ. Psychol.*, vol. 41, pp. 1–8, 2015.
- [47] B. Dexter, "Challenges in technology integration in schools," *Educ. Technol. Res. Dev.*, vol. 53, no. 4, pp. 35–45, 2005.
- [48] T. D. Walker and K. R. Scherff, "Contextualized teacher professional development for STEM in- novations," *J. Sci. Educ. Technol.*, vol. 29, pp. 101–115, 2020.
- [49] P. L. Smith and J. R. Ragan, *Instructional Design*, 4th ed., Hoboken, NJ: Wiley, 2020.
- [50] A. Loughran, *Developing a Pedagogy of Teacher Education*, 2nd ed., London, UK: Routledge, 2010.
- [51] T. Bates, *Teaching in a Digital Age*, 3rd ed., Vancouver, BC: Tony Bates Associates Ltd., 2023.
- [52] A. Sterling, Sustainable Education: Revisioning Learning and Change, Bristol, UK: Green Books, 2010.